VII Singular Homology

VII.1 Categories and Functors

정의 1 A category $\mathcal C$ consists of

(1) A class of objects X (2) \forall ordered pair X, Y of objects, a set hom(X, Y) of morphisms (denoted by $f: X \to Y$) s.t. $\forall f \in hom(X, Y), g \in hom(Y, Z)$, their composite $g \circ f \in hom(X, Z)$ is defined and satisfies (associativity) $f \in hom(X, Y), g \in hom(Y, Z), h \in hom(X, Z)$ $\Rightarrow h \circ (g \circ f) = (h \circ g) \circ f$ (\exists of id) $\forall X$: object, $\exists 1_X \in hom(X, X)$ called an identity morphism s.t. $1_X \circ f = f$ and $g \circ 1_X = g$, $\forall f \in hom(Y, X)$ and $\forall g \in hom(X, Y)$ for $\forall Y$: object.

1. id morphism is unique. $(:: 1_X = 1_X \circ 1'_X = 1'_X)$

경의 2 $g \circ f = 1_X \Rightarrow g$ is called a left inverse of f. f is called a right inverse of g.

2. If f has a left inverse g and right inverse g', then g = g'. $(:: g' = 1_X \circ g' = (g \circ f) \circ g' = g \circ (f \circ g') = g \circ 1_X = g)$ f has an inverse. $\Rightarrow f$ is called an equivalence.

경의 3 A covariant(contravariant resp.) functor F from a category C to a category \mathcal{D} is a function assigning to each object X of C, an object F(X) of \mathcal{D} and assigning to each morphism $f: X \to Y$, a morphism $F(f): F(X) \to F(Y)$ s.t. (1) $F(1_X) = 1_{F(X)}, \forall X$ (\leftarrow resp.) (2) $F(q \circ f) = F(q) \circ F(f) (= F(f) \circ F(q)$ resp.)

Note. f : equivalence. \Rightarrow F(f) : equivalence. $(\because F(g) \circ F(f) = F(g \circ f) = F(1_X) = 1_{F(X)})$

Example The category of sets and functions (=S)The category of topological spaces and continuous functions (=T)The category of groups and homomorphisms (=G)The category of abelian groups and homomorphisms $(=\mathcal{A})$ The category of *R*-modules and homomorphisms $(=\mathcal{M})$ The category of based topological spaces (X, x_0) and continuous functions preserving base point $(X, x_0) \to (Y, y_0)$ $(=T_0)$ The category of pairs of topological spaces and pairs of continuous functions $(X, Y) \xrightarrow{(f,g)} (X', Y') \quad (= \mathcal{T} \times \mathcal{T})$ The category of simplicial complexes and simplicial maps The category of chain complexes and chain maps Given (X, x_0) , the category of covering spaces and morphisms

Examples of Functors

1.
$$F : \mathcal{T} \times \mathcal{T} \to \mathcal{T}$$

 $(X, Y) \mapsto X \times Y$
 $\downarrow (f, g) \qquad \downarrow (f \times g)(x \times y) = (f(x), g(y))$
 $(X', Y') \mapsto X' \times Y'$

2. Forgetful functor
$$: \mathcal{T} \to \mathcal{S}$$
 and $\mathcal{G} \to \mathcal{S}$
 $X \mapsto "X"$ (underlying set)
 $\downarrow f \quad \downarrow "f"$ (underlying set function)
 $Y \mapsto "Y"$

3.
$$\mathcal{T}_0 \xrightarrow{F=\pi_1} \mathcal{G}$$

 $(X, x_0) \mapsto \pi_1(X, x_0)$
 $\downarrow f \qquad \downarrow \pi_1(f) = f$
 $(Y, y_0) \mapsto \pi_1(Y, y_0)$

4. Cat. simplicial cxs and simplicial maps \xrightarrow{F} Cat. of chain cxs and chain maps.

$$\begin{array}{cccc} K & \mapsto & \mathcal{C}(K) = \{C_p(K), \partial\} \\ \downarrow f & & \downarrow f_{\sharp} \\ L & \mapsto & \mathcal{C}(L) = \{C_p(L), \partial\} \end{array}$$

5. Cat. simplicial cxs and simplicial maps $\xrightarrow{H_p}$ Cat. of abel. gps and homs.

6. Cat. of vector sps and linear trs \xrightarrow{F} Cat. of vector sps and linear trs

$$\begin{array}{ccccc} V & \mapsto & V^* & \alpha \circ f \\ \downarrow f & & \uparrow f^* & \uparrow \\ W & \mapsto & W^* & \alpha \end{array}$$

This is a contravariant functor.

Natural Transformation

경의 4 $\mathcal{C} \stackrel{F}{\underset{G}{\Rightarrow}} \mathcal{D}$, two functors from a category \mathcal{C} to a category \mathcal{D} . A natural transformations T from F to G is a function $:Ob(\mathcal{C}) \to Mor(\mathcal{D})$ s.t. $F(X) \stackrel{F(f)}{\mapsto} F(Y)$ commutes for $\forall X, Y \in Ob(\mathcal{C})$ $X \mapsto T_X$ $\downarrow T_X \frown \downarrow T_Y$ $G(X) \stackrel{G(f)}{\mapsto} G(Y)$

If T_X is an equivalence, $\forall X \in Ob(\mathcal{C})$, then T is called a natural equivalence between two functors.

example: Let $(X, Y) \xrightarrow{F} X \times Y$ $\xrightarrow{G} Y \times X$ Then $T_{(X,Y)} : X \times Y \to Y \times X$ is a natural equivalence i.e., $(x, y) \mapsto (y, x)$ $F : X \times Y \xrightarrow{f \times g} X' \times Y'$ $\downarrow T_{(X,Y)} \downarrow T_{(X',Y')}$ commutes $\forall X, Y$. $G : Y \times X \xrightarrow{g \times f} Y' \times X'$