VII Singular Homology

VII. 1 Categories and Functors

정의 1 A category \mathcal{C} consists of
(1) A class of objects X
(2) \forall ordered pair X, Y of objects, a set $h o m(X, Y)$ of morphisms
(denoted by $f: X \rightarrow Y)$ s.t. $\forall f \in \operatorname{hom}(X, Y), g \in \operatorname{hom}(Y, Z)$,
their composite $g \circ f \in \operatorname{hom}(X, Z)$ is defined and satisfies
(associativity) $f \in \operatorname{hom}(X, Y), g \in \operatorname{hom}(Y, Z), h \in \operatorname{hom}(X, Z)$

$$
\Rightarrow h \circ(g \circ f)=(h \circ g) \circ f
$$

(\exists of id $) \forall X$: object, $\exists 1_{X} \in \operatorname{hom}(X, X)$ called an identity morphism

$$
\text { s.t. } 1_{X} \circ f=f \text { and } g \circ 1_{X}=g \text {, }
$$

$$
\forall f \in \operatorname{hom}(Y, X) \text { and } \forall g \in \operatorname{hom}(X, Y) \text { for } \forall Y: \text { object. }
$$

1. id morphism is unique. $\left(\because 1_{X}=1_{X} \circ 1_{X}^{\prime}=1_{X}^{\prime}\right)$

정의 $2 g \circ f=1_{X} \Rightarrow g$ is called a left inverse of f. f is called a right inverse of g.
2. If f has a left inverse g and right inverse g^{\prime}, then $g=g^{\prime}$.
$\left(\because g^{\prime}=1_{X} \circ g^{\prime}=(g \circ f) \circ g^{\prime}=g \circ\left(f \circ g^{\prime}\right)=g \circ 1_{X}=g\right)$
f has an inverse. $\Rightarrow f$ is called an equivalence.
정의 3 A covariant(contravariant resp.) functor F from a category \mathcal{C} to a category \mathcal{D} is a function assigning to each object X of \mathcal{C}, an object $F(X)$ of \mathcal{D} and assigning to each morphism $f: X \rightarrow Y$, a morphism

$$
\begin{aligned}
F(f): F(X) & \rightarrow F(Y) \text { s.t. (1) } F\left(1_{X}\right)=1_{F(X)}, \forall X \\
(\leftarrow \text { resp. }) & \text { (2) } F(g \circ f)=F(g) \circ F(f)(=F(f) \circ F(g) \text { resp. })
\end{aligned}
$$

Note. f : equivalence. $\Rightarrow F(f)$: equivalence.
$\left(\because F(g) \circ F(f)=F(g \circ f)=F\left(1_{X}\right)=1_{F(X)}\right)$
Example The category of sets and functions $(=\mathcal{S})$
The category of topological spaces and continuous functions $(=\mathcal{T})$
The category of groups and homomorphisms $(=\mathcal{G})$
The category of abelian groups and homomorphisms $(=\mathcal{A})$
The category of R-modules and homomorphisms ($=\mathcal{M}$)
The category of based topological spaces $\left(X, x_{0}\right)$ and continuous functions preserving base point $\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right) \quad\left(=\mathcal{T}_{0}\right)$

The category of pairs of topological spaces and pairs of continuous functions $(X, Y) \xrightarrow{(f, g)}\left(X^{\prime}, Y^{\prime}\right) \quad(=\mathcal{T} \times \mathcal{T})$
The category of simplicial complexes and simplicial maps
The category of chain complexes and chain maps
Given (X, x_{0}), the category of covering spaces and morphisms

Examples of Functors

1. $F: \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T}$

$$
\begin{aligned}
& (X, Y) \mapsto X \times Y \\
& \quad \downarrow(f, g) \quad \downarrow(f \times g)(x \times y)=(f(x), g(y)) \\
& \left(X^{\prime}, Y^{\prime}\right) \mapsto X^{\prime} \times Y^{\prime}
\end{aligned}
$$

2. Forgetful functor : $\mathcal{T} \rightarrow \mathcal{S}$ and $\mathcal{G} \rightarrow \mathcal{S}$
$X \mapsto " X$ "(underlying set)
$\downarrow f \quad \downarrow " f$ "(underlying set function)

$$
Y \mapsto " Y "
$$

3. $\mathcal{T}_{0} \xrightarrow{F=\pi_{1}} \mathcal{G}$
$\left(X, x_{0}\right) \mapsto \pi_{1}\left(X, x_{0}\right)$
$\downarrow f \quad \downarrow \pi_{1}(f)=f_{*}$
$\left(Y, y_{0}\right) \mapsto \pi_{1}\left(Y, y_{0}\right)$
4. Cat. simplicial cxs and simplicial maps \xrightarrow{F} Cat. of chain cxs and chain maps.

$$
\begin{array}{ccl}
K & \mapsto & \mathcal{C}(K)=\left\{C_{p}(K), \partial\right\} \\
\downarrow f & & \downarrow f_{\sharp} \\
L & \mapsto & \mathcal{C}(L)=\left\{C_{p}(L), \partial\right\}
\end{array}
$$

5. Cat. simplicial cxs and simplicial maps $\xrightarrow{H_{p}}$ Cat. of abel. gps and homs.

K		\mapsto
	F	$H_{p}(K)$
$\downarrow f$	$\mathcal{C}(K)$	$\downarrow f_{*}$
L	\mapsto	$H_{p}(L)$
	\searrow	\downarrow
	$\mathcal{C}(L)$	

6. Cat. of vector sps and linear $\operatorname{trs} \xrightarrow{F}$ Cat. of vector sps and linear trs

V	\mapsto	$V^{*} \alpha \circ f$
$\downarrow f$		$\uparrow f^{*}$
W	\mapsto	W^{*}

This is a contravariant functor.

Natural Transformation

정의 $4 \mathcal{C} \underset{G}{\stackrel{F}{\rightrightarrows}} \mathcal{D}$, two functors from a category \mathcal{C} to a category \mathcal{D}.
A natural transformations T from F to G is a function : $\operatorname{Ob}(\mathcal{C}) \rightarrow \operatorname{Mor}(\mathcal{D})$
s.t. $F(X) \stackrel{F(f)}{\mapsto} F(Y) \quad$ commutes for $\forall X, Y \in O b(\mathcal{C}) \quad X \mapsto T_{X}$
$\downarrow T_{X} \curvearrowright \downarrow T_{Y}$
$G(X) \stackrel{G(f)}{\mapsto} G(Y)$
If T_{X} is an equivalence, $\forall X \in O b(\mathcal{C})$, then T is called a natural equivalence between two functors.
example: Let $(X, Y) \stackrel{F}{\mapsto} X \times Y$
$\stackrel{G}{\stackrel{F}{\mapsto}} Y \times X$
Then $T_{(X, Y)}: X \times Y \rightarrow Y \times X$ is a natural equivalence i.e.,

$$
(x, y) \mapsto(y, x)
$$

$F: X \times Y \xrightarrow{f \times g} X^{\prime} \times Y^{\prime}$
$\downarrow T_{(X, Y)} \quad \downarrow T_{\left(X^{\prime}, Y^{\prime}\right)} \quad$ commutes $\forall X, Y$.
$G: Y \times X \xrightarrow{g \times f} Y^{\prime} \times X^{\prime}$

